If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-12y-27.96=0
a = 1; b = -12; c = -27.96;
Δ = b2-4ac
Δ = -122-4·1·(-27.96)
Δ = 255.84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-\sqrt{255.84}}{2*1}=\frac{12-\sqrt{255.84}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+\sqrt{255.84}}{2*1}=\frac{12+\sqrt{255.84}}{2} $
| X-32/212-32=x/100 | | X-32/180=x/100 | | 3p+13=41 | | 8x*5=250 | | 3(2x+1)+9x=36 | | 5/x-1/2x=9/x^2 | | 4/x+37=123 | | 5(x+1.2)-4=10x+3 | | 1.5(y+1.8)=24y | | 5x*10=200 | | 3x(5)=28 | | 3x2-11x-30=0 | | 2+4(x+3)=26 | | 2t2-72=0 | | 9x+6=2-6 | | 3x-6x-9=7-5x | | 6x+72+14x+40=180 | | 2x(4x-138)=x(65+1836x) | | 5x+2=1.x=3 | | 63x+65-65x=64.546 | | 2=26/2a | | 10=2(11+2d) | | 8383833-y=828283828383 | | 4p+5=29-29 | | 26/2a=2 | | h/4+7=9 | | 3b+1=8b-24 | | 4x^2-20x+42=20x-42 | | (158-x)/7=20 | | 4x^2-20x+42=20-42 | | 304=7+3n-3 | | 304=7(n-1)3 |